Extensions 1→N→G→Q→1 with N=C22 and Q=C4×C8

Direct product G=N×Q with N=C22 and Q=C4×C8
dρLabelID
C22×C4×C8128C2^2xC4xC8128,1601

Semidirect products G=N:Q with N=C22 and Q=C4×C8
extensionφ:Q→Aut NdρLabelID
C221(C4×C8) = C4×C22⋊C8φ: C4×C8/C42C2 ⊆ Aut C2264C2^2:1(C4xC8)128,480
C222(C4×C8) = C8×C22⋊C4φ: C4×C8/C2×C8C2 ⊆ Aut C2264C2^2:2(C4xC8)128,483

Non-split extensions G=N.Q with N=C22 and Q=C4×C8
extensionφ:Q→Aut NdρLabelID
C22.1(C4×C8) = C23.19C42φ: C4×C8/C42C2 ⊆ Aut C2264C2^2.1(C4xC8)128,12
C22.2(C4×C8) = C42.2Q8φ: C4×C8/C42C2 ⊆ Aut C2264C2^2.2(C4xC8)128,13
C22.3(C4×C8) = M5(2)⋊C4φ: C4×C8/C42C2 ⊆ Aut C2264C2^2.3(C4xC8)128,109
C22.4(C4×C8) = C82⋊C2φ: C4×C8/C42C2 ⊆ Aut C2264C2^2.4(C4xC8)128,182
C22.5(C4×C8) = C4×M5(2)φ: C4×C8/C42C2 ⊆ Aut C2264C2^2.5(C4xC8)128,839
C22.6(C4×C8) = C23.21C42φ: C4×C8/C2×C8C2 ⊆ Aut C2232C2^2.6(C4xC8)128,14
C22.7(C4×C8) = C42.3Q8φ: C4×C8/C2×C8C2 ⊆ Aut C2264C2^2.7(C4xC8)128,15
C22.8(C4×C8) = M4(2).C8φ: C4×C8/C2×C8C2 ⊆ Aut C22324C2^2.8(C4xC8)128,110
C22.9(C4×C8) = C8×M4(2)φ: C4×C8/C2×C8C2 ⊆ Aut C2264C2^2.9(C4xC8)128,181
C22.10(C4×C8) = C162M5(2)φ: C4×C8/C2×C8C2 ⊆ Aut C2264C2^2.10(C4xC8)128,840
C22.11(C4×C8) = C2.C82central extension (φ=1)128C2^2.11(C4xC8)128,5
C22.12(C4×C8) = C165C8central extension (φ=1)128C2^2.12(C4xC8)128,43
C22.13(C4×C8) = C8⋊C16central extension (φ=1)128C2^2.13(C4xC8)128,44
C22.14(C4×C8) = C22.7M5(2)central extension (φ=1)128C2^2.14(C4xC8)128,106
C22.15(C4×C8) = C2×C8⋊C8central extension (φ=1)128C2^2.15(C4xC8)128,180
C22.16(C4×C8) = C2×C22.7C42central extension (φ=1)128C2^2.16(C4xC8)128,459
C22.17(C4×C8) = C2×C165C4central extension (φ=1)128C2^2.17(C4xC8)128,838

׿
×
𝔽